PRISM: An Algorithm for Inducing Modular Rules
نویسنده
چکیده
The decision tree output of Quinlan's ID3 algorithm is one of its major weaknesses. Not only can it be incomprehensible and difficult to manipulate, but its use in expert systems frequently demands irrelevant information to be supplied. This report argues that the problem lies in the induction algorithm itself and can only be remedied by radically altering the underlying strategy. It describes a new algorithm, PRISM which, although based on ID3, uses a different induction strategy to induce rules which are modular, thus avoiding many of the problems associated with decision trees.
منابع مشابه
Towards a Computationally Efficient Approach to Modular Classification Rule Induction
Induction of classification rules is one of the most important technologies in data mining. Most of the work in this field has concentrated on the Top Down Induction of Decision Trees (TDIDT) approach. However, alternative approaches have been developed such as the Prism algorithm for inducing modular rules. Prism often produces qualitatively better rules than TDIDT but suffers from higher comp...
متن کاملP-Prism: A Computationally Efficient Approach to Scaling up Classification Rule Induction
Top Down Induction of Decision Trees (TDIDT) is the most commonly used method of constructing a model from a dataset in the form of classification rules to classify previously unseen data. Alternative algorithms have been developed such as the Prism algorithm. Prism constructs modular rules which produce qualitatively better rules than rules induced by TDIDT. However, along with the increasing ...
متن کاملAutomatic Induction of Classification Rules from Examples Using N-Prism
One of the key technologies of data mining is the automatic induction of rules from examples, particularly the induction of classification rules. Most work in this field has concentrated on the generation of such rules in the intermediate form of decision trees. An alternative approach is to generate modular classification rules directly from the examples. This paper seeks to establish a revise...
متن کاملInduction of Modular Classification Rules: Using Jmax-pruning
The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and nois...
متن کاملRandom Prism: a noise-tolerant alternative to Random Forests
Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms which also induces classification ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Man-Machine Studies
دوره 27 شماره
صفحات -
تاریخ انتشار 1987